Genetic diversity, Population Fitness and Environmental Change

Jeffrey Markert

D. Champlin, J. Grear, R. Gobell, A. Kuhn, A. Roth, T.J. McGreevy M. Bagley & D. Nacci

Genetic diversity, Population Fitness and Environmental Change

Jeffrey Markert

D. Champlin, J. Grear, R. Gobell, A. Kuhn, A. Roth, <u>T.J. McGreevy</u> M. Bagley & <u>D. Nacci</u> How do changes in Genetic Diversity influence Population Fitness?

Microsatellite allele diversity in Atlantic Salmon (Lage and Kornfield, 2006, Cons. Gen. 7: 91-104)

Microsatellite allele diversity in Atlantic Salmon (Lage and Kornfield, 2006, Cons. Gen. 7: 91-104)

Microsatellite allele diversity in Atlantic Salmon (Lage and Kornfield, 2006, Cons. Gen. 7: 91-104)

How much genetic diversity is 'enough'?

Can we detect meaningful losses of diversity, before it's too late?

beyond Inbreeding Depression *towards* Adaptive Capacity

myfwc.com/panther/

www.whatbird.com

Part I: The Animal Mysid or Opossum Shrimp Americamysis bahia

Class Malacostraca Order Mysida Family Mysidae

Shrimp are in the order decapoda

Disney World, Florida

COOS GOOS LE

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image USDA Farm Service Agency

29°11'52.92" N 87°25'03.69" W

Eye alt 1107.10

Advantages

short generation times
 ~ 3 weeks egg to egg

live at high densities
 ~ 100 individuals in a 2.5 gallon (~ 10 I) aquarium

Advantages

Easy to establish maternity (Brood Care)

Tolerates multiple environments (esp. salinity)

Lower fecundity than *Drosophila* or *Tribolium* – reproductive dynamics more like a bird or mammal

Part II: The System

Manipulate levels of population GD

Replicate each level

Quantify fitness in multiple environments

HOW?:

Partition - reduce genetic diversity through a series of bottlenecks

Reconstitute - combine different numbers of low diversity lines (also included wild type ancestors - admixed)

Stress - Subject bottlenecked and reconstituted lines to environmental stress (*with controls*)

Census – count replicates weekly

Methods:

Partition - reduce genetic diversity through a series of bottlenecks

Reconstitute - combine different numbers of low diversity lines (also included wild type ancestors - admixed)

Stress - Subject bottlenecked and reconstituted lines to environmental stress (*with controls*)

Census – count replicates weekly

1X 1X 1X 1X

.....6X lines, 8X, Admixed (wild type)

Methods:

Partition - reduce genetic diversity through a series of bottlenecks

Reconstitute - combine different numbers of low diversity lines (also included wild type ancestors - admixed)

Stress - Subject bottlenecked and reconstituted lines to environmental stress (*with controls*)

Census – count replicates weekly

Reduced Salinity (with controls)

Methods:

Partition - reduce genetic diversity through a series of bottlenecks

Reconstitute - combine different numbers of low diversity lines (also included wild type ancestors - admixed)

Stress - Subject bottlenecked and reconstituted lines to environmental stress (*with controls*)

Census – count replicates weekly

Part III: The Experiment Design Summary

Environmental Stress

0 not calt

	d		
Diversity Leve	# Replicates	Environment	
1 V	15	Low Salinity	
17	15	Normal Salinity	-
٦V	15	Low Salinity	
28	15	Normal Salinity	
CN	10	Low Salinity	
σχ	10	Normal Salinity	—
ov	10	Low Salinity	
0	10	Normal Salinity	—
A duoise d	10	Low Salinity	
Aamixed	10	Normal Salinity	
	=120		

Good Environment 30 ppt salt Some Details....

All tanks founded under permissive conditions (normal salinity)

Allowed 3 weeks to settle, then counted

Salinity lowered in half the tanks

Counted every week for 3 months

91,519 mysids counted!

Part IV: Results Week Zero

(net increase after 3 weeks in permissive conditions)

Hybrid Vigor

Hybrid Rescue

Long-term fitness and environmental stress

Several fitness proxies available --

Median Population Size

Actual Population Extinction

Observed Extinction

>	Diversity	Environment	% Extinct
High <i>Diversity-</i> Lov	1 V	Permissive	20
	17	Stressful	73
	2X	Permissive	-
		Stressful	7
	6X	Permissive	-
		Stressful	-
	8X	Permissive	-
		Stressful	-
	Admixed	Permissive	-
	Aumixeu	Stressful	-

Long-Term Fitness (13 wk median population size)

Long-Term Fitness

Lower------Higher Lower-----Higher Higher Genetic Diversity

13 week median population size

Why not SSR's?

AFLPs realistic for many at risk taxa

_ower-----Higher Lower-----Higher Genetic Diversity (% polymorphic bands)

_ower-----Higher

_ower-----Higher

Lower-----Higher

AFLP Diversity

Genetic Diversity

AFLP Diversity

Part V: The Future What about Extinction Risk??

Diversity	Environment	% Extinct
1X	Permissive	20
ТV	Stressful	73
лу	Permissive	-
2۸	Stressful	7
۶V	Permissive	-
07	Stressful	-
ov	Permissive	-
07	Stressful	-
Admixed	Permissive	-
Aumixeu	Stressful	-

Population Viability Analysis

Time

Used to parameterize a stochastic model - predicts probability of falling below an extinction threshold over a defined time period

'Long-term' Extinction Risk

13 week projection

Actual Extinction

Box-whisker plots of the probability of Nt passing below N0/100

Probabilities are separately estimated by simulation for each

population from separately estimated parameters of the discrete-time stochastic-

logistic model of Dennis and Taper (1994).

'Long-term' Extinction Risk

26 week projection

56 week projection

Part VI: What have we learned? General Conclusions

As expected, long-term extinction risk is associated with genetic diversity in harsh environments - even with modest losses of GD

General Conclusions

As expected, long-term extinction risk is associated with genetic diversity in harsh environments - even with modest losses of GD

BUT

Permissive environments may mask the harmful effects of reduced genetic diversity in the short term

General Conclusions

As expected, long-term extinction risk is associated with genetic diversity in harsh environments - even with modest losses of GD

BUT

Permissive environments may mask the harmful effects of reduced genetic diversity in the short term

AND

AFLP markers do a poor job detecting small, but potentially critical losses of genetic diversity under very tightly controlled conditions

How much genetic diversity is 'enough'?
minor losses can be important in especially in suboptimal environments
Can we detect meaningful losses of diversity, before it's too late?
perhaps not with AFLP

Acknowledgements

Coauthors: M. Bagley, D. Nacci, D. Champlin, J. Grear, R. Gobell, A. Kuhn, A. Roth, T.J. McGreevy

US-EPA Atlantic Ecology Division, Gulf Ecology Division and Ecological Exposure Research Division

Volunteers:

L. Coiro, K. Ho, L. Mills, B. Minor, P. Pelletier, M. Perron, S. Rego, M. Tagliabue, G. Thursby, M. Smith, H. Haring, A. Collins, S. Winnicki, M. Schroeder, D. Duquette, Z. Schuyler, J. Darling, D. Proestou, R. Brown, BHS, POS

More at www.markert.fastmail.fm

Stressful Environment

In this controlled system AFLP's are poor predictors of population genetic health

Lower Genetic Diversity Higher